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ABSTRACT

This study presents a comparative analysis of nonlinear regression models integrated with feature
selection for predicting the cleanliness factor (CF) in coal-fired utilities. The models evaluated are
regression trees (RT), support vector regression (SVR), ensembles of trees, and artificial neural networks
(ANN). Different boiler designs introduce various operational parameters that influence cleanliness,
making it more challenging to predict real-time data accurately. To enhance the model’s predictive
accuracy, the minimum redundancy maximum relevance (MRMR) feature selection technique was
integrated, facilitating improved model performance by selecting the best subsets of variables. Model
performance was assessed accordingly, where the number of selected features varies between 138
and 10. The results indicate that a combination of bagged trees and MRMR with 10 features achieved
R?values of 0.973 for the training set and 0.976 for the test set, with a mean squared error (MSE) of
0.001 for both datasets. Compared to SVR and ANN, bagged trees consistently demonstrated superior
predictive accuracy with reduced computational complexity. These findings confirm that ensemble-
based models, particularly bagged trees with MRMR, provide the most accurate and computationally
efficient approach for CF prediction. An accurate CF prediction creates more reliable information for
a data-driven approach that solves the soot-blowing operational system. The system has the risk of
either underblowing or overblowing steam during boiler cleaning. This risk, if not properly handled,

may lead to more severe ash fouling and slagging
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INTRODUCTION

Coal-fired power plants generate substantial soot, leading to issues such as ash fouling and
slagging in boiler sections (Wei et al., 2020). These issues not only reduce heat transfer
efficiency but can also cause damage to boiler components, raising operational costs and
creating additional maintenance demands. Soot-blowing mechanisms are employed to
mitigate these effects, using high-temperature, high-pressure steam to remove soot from
boiler walls and pipes (Kumari & Srinivasan, 2019). However, soot-blowing traditionally
follows a fixed schedule, relying on operator experience, which can result in inconsistent
cleaning due to human error (P. Li et al., 2023; Q. Li et al., 2020; Shi et al., 2021; Wen et
al., 2022). To evaluate cleaning effectiveness, the CF is used as a metric, comparing the
boiler’s current condition to an ideally clean state (Shi et al., 2022).

A coal-fired power plant is known to operate with a high-dimensional dataset (Menn
& Chudnovsky, 2021). Despite improvements in boiler design and technology, research
on identifying key parameters that affect boiler cleanliness has been limited, particularly
in utilizing data mining techniques for predictive modeling. Thota and Syed (2024)
mentioned that while coal-fired utilities have much operational data, the usage of unwanted
characteristics and past data is not being addressed properly, which later causes the
prediction performance to degrade. Different boiler designs and configurations will introduce
varying parameters that can impact the cleanliness of the boiler. Thus, relying on the expert
advice based on previous boilers may overlook hidden correlations within the boiler.

This study addresses the need for feature selection methods to identify the most relevant
parameters for accurate CF predictions. Feature selection algorithms help identify the
best subsets of variables that enhance model performance by focusing on critical factors
and reducing complexity (Bezerra et al., 2024; Jemai & Zarrad, 2023). Given that the CF
ranges continuously from 0 to 1, regression learners are well-suited for this task, as they can
capture continuous outputs based on the model’s input features. Furthermore, considering
the high-dimensional dataset, nonlinear relationships will be utilized to identify patterns
among key parameters that influence boiler cleanliness.

Therefore, this research explores various nonlinear regression models that incorporate
feature selection techniques, comparing their performance to determine the most effective
approach for analyzing data from coal-fired boilers. The objective is to develop robust
regression models that use real production data to predict the CF within the convective sections
of coal-fired power plants, ultimately enhancing cleaning efficiency and operational stability.

Overview of Coal-Fired Boiler

The overview of an ultra-supercritical boiler power plant operated by one of the major
utility providers in Malaysia is presented in Figure 1. The plant includes several key
components: the boiler system, furnace system, boiler clean-up and start-up system, and
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Figure 1. Overview of ultra-supercritical boiler power plant (Source: Tenaga Nasional Berhad [TNB], 2024)

air and gas system. Additionally, the metal  Table 1

temperature throughout the power plant is © ¢@meters of pulverizer

considered. The components are primarily No. Parameter Unit
categorized based on their respective heat 1. Pulv A coal flow t/h
exchangers. 2. Pulv B coal flow t/h
. 5 . . 3. Pulv C coal flow t/h
The boiler system’s pulverizer consists

£ i 11 ) listed i 4. Pulv D coal flow t/h
of six coal flow store.lge un.lts, as listed mn 5. Pulv E coal flow h
Table 1. Of these, five will be operated 6. Puly F coal flow th

simultaneously, while one will serve as a .. b1\ — pulverizer
backup for the coal flow. Pulverizers grind

coal into a fine powder, which is subsequently used as fuel for combustion in the boiler to
optimize combustion efficiency.

The following parameters are essential for the main soot-blowing operation system,
as shown in Table 2. The main steam pressure, flow, and temperature sensors measure the
pressure, flow, and temperature generated within the boiler. An optical pyrometer sensor is
used to monitor the flue gas components. Two types of fans are utilized: the primary air fan

(PAF), which transports pulverized coal from the pulverizers to the furnace area, and the
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forced draft fan (FDF), which supplies fresh
air to the furnace for the combustion process.
Additionally, feedwater pressure and flow
sensors monitor the feedwater as it enters the
boiler. The target load measures the power
output required from the steam turbine, while
the steam blow-off ring (SBR) steam flow
sensor measures steam flow as part of the
power plant’s safety and operational systems.

The economizer is a component of the
convective section of the boiler used to preheat
feedwater before it enters the boiler. This
process reduces the amount of coal required
to produce high heat for steam generation.
Additionally, the economizer cools down
the flue gas before it is released into the
atmosphere. Sensors monitor parameters,
including the oxygen percentage, gas inlet
and outlet temperatures, and feedwater
inlet and outlet temperatures within the
economizer. The detailed parameters for the
economizer are listed in Table 3.

The primary superheater (PSH),
located within the convective section of
the boiler, serves as the initial stage in the
superheating process. Its primary function
is to elevate the temperature of the steam
without increasing its pressure, optimizing
thermal efficiency while maintaining
safe operational limits. Key parameters
monitored by sensors include steam inlet
and outlet temperatures, as well as spray

Table 2
Parameters of the main operation
No. Parameter Unit

1. Main steam pressure MPag
2. Main steam flow t/hr
3. Main steam temperature 1 degC
4. Optical pyrometer sensor 1 degC
5. Optical pyrometer sensor 2 degC
6. PAF A air volume flow t/h
7. PAF B air volume flow t/h
8. FDF A air volume flow t/h
9. FDF B air volume flow t/h
10. Feed water pressure MPa
11. FW flow t/h
12. Main steam (A) pressure Mpag
13. Main steam (B) pressure MPag
14. Target load (net) MW

15. SBR steam flow t/h

Note. PAF = Primary air fan; FDF = Force draft fan;
FW = Feedwater; SBR = Steam blow-off ring

Table 3
Parameters of economizer
No. Parameter Unit

1 ECON A out gas O, anal %
2 ECON B out gas O, anal %
3. ECON out gas TEMP 1 degC
4. ECON out gas TEMP 2 degC
5 ECON inlet FW TEMP degC
6 ECON outlet FW TEMP degC
7 ECON B outlet FW TEMP degC
8. ECON inlet FW flow 3 t/h

Note. ECON = Economizer; O, = Oxygen; TEMP =
Temperature; FW = Feedwater

water flow, ensuring effective and controlled temperature increases. The detailed

parameters for the PSH are listed in Table 4.

The secondary superheater (SSH), also situated in the convective section, is the second
stage of superheating and further elevates the steam’s temperature to ultra-high levels. This

additional temperature increase enhances the thermal energy available for power generation.
Similar to the PSH, sensors monitor critical parameters such as the steam inlet and outlet
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temperatures and spray water flow, ensuring precise temperature control at this advanced
heating stage. The detailed parameters for the SSH are listed in Table 5.

Following the SSH, the final superheater (FSH), the third stage of superheating, maximizes
the steam’s temperature just before it enters the high-pressure turbine. This maximization
step is crucial for achieving the highest possible efficiency in power generation. Sensors in
the FSH monitor vital parameters, including steam inlets and outlet temperatures, to ensure
optimal performance and safety. The detailed parameters for the FSH are listed in Table 6.

The reheater (RH) component, part of the boiler’s convective section, reintroduces
heat to the steam after it exits the high-pressure turbine, raising its temperature before it
enters the low and intermediate-pressure turbines. This reheating process is essential for
sustaining efficiency and preventing moisture formation, which could damage turbine
blades. Key parameters, such as steam inlet
and outlet temperatures, are continuously  Table 6

monitored by sensors to regulate this reheat Parameters of final superheaters (FSH)

phase effectively. The detailed parameters _ No. Parameter Unit
for the RH are listed in Table 7. L FSH A inlet steam TEMP degC
2. FSH B inlet steam TEMP degC
3. FSH A out steam TEMP degC
Table 4 4. FSH B out steam TEMP degC
Parameters of primary superheaters (PSH) Note. TEMP = Temperature
No. Parameter Unit
1 PSH A inlet steam TEMP degC  Table7
2 PSH B inlet steam TEMP ~ degC ~ [arameters of reheaters (RH)
3. PSH A out steam TEMP degC No. Parameter Unit
4 PSH B out steam TEMP degC 1. PRH steam TEMP A degC
5. PSH spray water flow (1st stage) t/h 2. PRH steam TEMP B degC
Note. TEMP = Temperature 3. FRH A out steam TEMP degC
4. FRH B out steam TEMP degC
S. HRH A steam pressure (A) MPa
Table 5 6. HRH B steam pressure (B) MPa
Parameters of secondary superheaters (SSH)
7. CRH steam TEMP A degC
No. Parameter Unit 8. CRH steam TEMP B degC
1 SSH A inlet steam TEMP degC 9. CRH steam A pressure MPa
2 SSH B inlet steam TEMP degC 11. RH spray water CV A POS %
3 SSH A out steam TEMP degC 12. RH spray water CV B POS A
4. SSH B out steam TEMP degC 13. RH spray water flow th
5 SSH spray water CV A POS % 14.  HORIZRH out gas TEMP 1 degC
6 SSH spray water CV B POS o Note. PRH = Primary reheater; FRH = Final reheater;
7. SSH spray water flow t/h HRH = Hot reheat; CRH = Cold reheat; HORIZ =
Note. TEMP = Temperature; CV = Control valve; Horizontal; TEMP = Temperature; CV = Control
POS = Position valve; POS = Position
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The air heater (AH), located in the convective section of the boiler, preheats the
combustion air by utilizing residual heat from the flue gases, thereby enhancing overall
combustion efficiency. By raising the temperature of the incoming air, the AH reduces the
energy required for combustion, thereby improving the boiler’s thermal efficiency and
reducing fuel consumption. Sensors within the AH monitor key parameters, such as the inlet
gas temperature, to ensure optimal heat transfer and maintain efficient preheating conditions.
This monitoring enables precise adjustments, maximizing both energy conservation and
combustion efficiency. The detailed parameters for the AH are listed in Table 8.

Metal temperature sensors make up the largest number of sensors in the power plant,
serving to monitor the temperature of various metal components. Due to the extensive
area required for heat transfer, numerous

sensors are installed within the boiler. Table 8

Accurate temperature control is imperative ~Parameters of air heaters (AH)

for optimizing coal power plant efficiency. No. Parameter Unit
The metal temperature sensors are listed in 1. AH A inlet gas TEMP degC
Table 9. 2. AH B inlet gas TEMP degC
Note. TEMP = Temperature
Table 9
Metal temperature sensors
No. Furnace Superheaters Reheaters
1. MNIJ:05: BSC1_AI 0186 MNJ:05: BSC2 AI 0281 MNJ:05: BSC2 AI 0317
2. MNIJ:05: BSC1_AI 0187 MNJ:05: BSC2 AI 0282 MNJ:05: BSC2 AI 0319
3. MNIJ:05: BSC1_AI 0188 MNJ:05: BSC2 AI 0283 MNJ:05: BSC2 Al 0322
4. MNIJ:05: BSCI1_AI 0189 MNJ:05: BSC2 Al 0284 MNJ:05: BSC2 Al 0324
5. MNI:05: BSC1_AI 0190 MNJ:05: BSC2 AI 0285 MNJ:05: BSC2 AI 0318
6. MNIJ:05: BSC1_AI 0191 MNJ:05: BSC2 AI 0286 MNJ:05: BSC2 AI 0321
7. MNIJ:05: BSCI_AI 0193 MNJ:05: BSC2 Al 0287 MNJ:05: BSC2 AI 0323
8. MNI:05: BSC1_AI 0194 MNJ:05: BSC2_ AI 0289 MNJ:05: BSC2 AI 0325
9. MNIJ:05: BSCI_AI 0195 MNJ:05: BSC1_AI 0165 MNJ:05: BSC2 AI 0326
10.  MNI:05: BSC1 Al 0234 MNJ:05: BSC1_AI 0166 MNJ:05: BSC2 Al 0327
11.  MNIJ:05: BSC1_AI 0235 MNJ:05: BSC1_AI 0167 MNJ:05: BSC2 AI 0329
12. MNI:05: BSCI1_AI 0236 MNJ:05: BSC1_AI 0244 MNJ:05: BSC2 AI 0330
13. MNI:05: BSCI1_AI 0237 MNJ:05: BSC1_AI 0245 MNJ:05: BSC2 AI 0331
14.  MNI:05: BSC1 AI 0238 MNJ:05: BSC1_AI 0246 MNJ:05: BSC2 AI 0332
15.  MNI:05: BSCI1_AI 0239 MNJ:05: BSC1_AI 0259 MNJ:05: BSC2 AI 0333
16.  MNI:05: BSC1_AI 0241 MNJ:05: BSC1_AI 0260 MNJ:05: BSC2 AI 0334
17.  MNI:05:_ BSC1_AI 0242 MNIJ:05:_BSC1_AI 0261
18.  MNI:05:_ BSC1_AI 0243 MNIJ:05:_BSC1_AI 0262
19.  MNJ:05: BSC1_AI 0169 MNIJ:05: BSC1_AI 0263
20.  MNIJ:05: BSC1_AI 0170 MNJ:05: BSC1_AI 0265

PREPRINT



Comparing Models for CF Prediction in Coal-fired Utilities

Table 9 (continue)

No. Furnace Superheaters Reheaters
21.  MNIJ:05: BSC1_AI 0171 MNJ:05: BSC1_AI 0266
22. MNI:05: BSC1_AI 0172 MNJ:05: BSC1_AI 0310
23. MNIJ:05: BSC1_AI 0173 MNIJ:05:_BSC2_AI 0308
24.  MNIJ:05: BSC1 Al 0217 MNIJ:05: BSC2 Al 0309
25.  MNIJ:05: BSC1_AI 0218 MNJ:05: BSC2 Al 0310
26.  MNJ:05: BSC1_AI 0219 MNJ:05: BSC2_AI 0311
27.  MNI:05:_ BSC1_AI 0220 MNIJ:05:_BSC2_AI 0313
28.  MNIJ:05: BSC1 Al 0221 MNIJ:05: BSC2 Al 0314
29. MNIJ:05: BSC2_AI 0315
30. MNJ:05: BSC2 Al 0316

Note. MNJ:05: BSC1_AI xxxx = Manjung unit 5 boiler superheater coil 1 analog input no. xxxx; MNJ:05:
BSC2_ Al xxxx = Manjung unit 5 boiler superheater coil 2 analog input no. xxxx

METHODOLOGY

This research focuses on developing nonlinear regression models, enhanced with feature
selection techniques, to analyze and identify the most robust model for gaining insights
into new parameters within the convective sections of the boiler. The model development
process begins with data collection from the power plant, followed by data preprocessing
to ensure the quality and accuracy of the data. The dataset is then partitioned into training
and testing sets.

A crucial part of the analysis involves computing CF, which serves as the target
variable to measure boiler efficiency. Feature selection techniques are applied to identify
key predictive variables, after which nonlinear regression models are developed, trained,
and tested. Finally, prediction results are evaluated and compared to determine the model’s
accuracy and effectiveness, guiding improvements in operational efficiency for the boiler’s
convective components.

Dataset Preparation: Preprocessing and Partitioning Data

This dataset was extracted from a 1,000 MW ultra-supercritical coal-fired power plant in
Malaysia, covering the years 2018 and 2023. Data from 2018 is considered the reference
state of cleanliness for the boiler, while data from 2023 represent the current state of
the boiler under investigation. According to plant engineers and technicians, the data
from 2018 is considered to represent the cleanest operating conditions, as it marks the
beginning of full-scale operations at the power plant. Before that, the plant was still in its
trial phase. A total of 138 parameters were collected throughout the power plant. The raw
data is primarily sourced from heat exchanger components to identify the parameters most
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influencing boiler cleanliness. This process includes data preprocessing, CF computation,
and data partitioning.

Preprocessing is essential to ensure model quality, as it helps eliminate outliers and
manage missing values. Null data, where values were not recorded properly, is removed
because most algorithms cannot process such entries. Outliers, defined as data with a
target load below 750 MW, are also excluded. Data within the target load range is retained,
as values below this threshold often correspond to the boiler’s start-up phase before
combustion stabilizes and are unsuitable for model development. After preprocessing, the
dataset is randomly partitioned into training and testing sets, with an 80:20 ratio, where
80% of the data is used for training and 20% is reserved for testing.

Computing the Cleanliness Factor

In this study, the CF is selected as the dependent variable to assess fouling conditions in
the convective section of the boiler. Equation 1 defines the calculation method for CF,
which has been validated as an effective means of determining the cleanliness status of
heat exchangers. CF is defined as the ratio of the real-time heat transfer rate, Q,., to the
heat transfer rate under clean conditions, Q. (Breeding et al., 2010).

_&
Q

The equations for heat transfer rates under real-time and clean conditions (Q,,.) are
fundamentally similar, differing only by the timeframe of data collection. Reference data for
the clean condition were recorded in 2018, marking the start of full-scale operations at the
power plant. Therefore, this timeframe is considered to represent the boiler’s cleanest state.

CF (1]

Equation 2 defines the computation of the heat transfer rate, providing an accurate average
based on the inlet and outlet temperatures of the gas and steam (Madejski et al., 2018).

Qr/c =m (Houtlet - Hinlet) [2]

Here, m is the mass flow rate, and H,,,;.; and H,,;., represent the enthalpy values
from the superheated steam table, based on the steam temperature and pressure within the
boiler. This calculation ensures data consistency. Ultimately, this equation is adapted to
align with the dataset, with CF designated as the target variable for training the nonlinear
regression model.

Model Development

Model training in this study incorporates nonlinear regression models alongside feature
selection techniques. Models with all 138 features represent those without feature selection,
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as illustrated in the research model framework in Figure 2. Feature selection is performed
using the MRMR algorithm, resulting in varying numbers of selected features. RT, SVR,
ensembles of trees, and ANN are then developed based on the selected features.

Step 1: Implement feature selection Step 2: Implement nonlinear regression model

128,50, 25, 10 bagged tree, boosted tree

Choose the algorithm presets

| 1 1

I : |

I i -
Choose MRMR. | 1 Choose the model to be trained: > Regression tree structure:

| | - fine tree, medium tree, coarse tree

| * | | regression tree, ensembles of tree,

1 I | SVM, ANN

' —

|

1 Varies the number of features into ¢ o Ensembles of tree algorithm:

|

I

I

|

SVM kernels:
polynomial, Gaussian

ANN structure:
bilayered network, trilayered
network_ narrow network, medum
network, wide network

Figure 2. Structure of the research framework
Note. MRMR = Minimum redundancy maximum relevance; SVM = Support vector machine; ANN =
Artificial neural network

Implementation of Feature Selection

The MRMR algorithm is a widely used feature selection method that identifies the
most relevant features for predicting the target output while simultaneously minimizing
redundancy among the selected features. By balancing relevance and redundancy, MRMR
ensures that the chosen features provide highly informative and non-overlapping inputs to
the model, ultimately enhancing the model’s predictive accuracy and interpretability (Peng
et al., 2005). This study adopts MRMR mainly due to its characteristics, which balance
feature importance while still removing redundancy. Other techniques, such as recursive
feature elimination (RFE), may have a high computational cost for large datasets (Ding
etal., 2022).

Prior to model training, feature selection is conducted using the MRMR algorithm.
This step helps evaluate the impact of feature selection on model performance and stability,
providing insight into the effectiveness of different feature sets. For each algorithm, feature
subsets are selected in varying sizes—128, 50, 25, and 10 parameters, allowing the model
to be trained with predetermined numbers of features. This approach enables a thorough
assessment of the consistency and effectiveness of model performance based on different
feature set sizes, supporting a robust evaluation of the role of feature selection in enhancing
model reliability and generalizability.
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Implementation of Nonlinear Regression Models

Models that correlate dependent and independent variables in a nonlinear manner
to predict numerical outcomes effectively capture complex relationships, providing
more accurate predictions of continuous data compared to linear models (Liang et al.,
2022). The models selected for this study are RT, SVR, an ensemble of trees, and ANN.
These models were chosen based on their suitability for handling nonlinear datasets,
relatively low computational complexity, efficient processing time, and availability
in the Matrix Laboratory (MATLAB). RT offers clear interpretability and can capture
nonlinear relationships with minimal data preprocessing. SVR is particularly effective
in high-dimensional datasets and maintains strong generalization performance due to its
robustness against overfitting. An ensemble of trees combines multiple trees to enhance
predictive performance, thereby improving accuracy, reducing overfitting, and increasing
model robustness. Finally, ANN is widely applied in machine learning for its powerful
capabilities in capturing complex and nonlinear patterns within data. It can also generalize
well to unseen data. The following section provides a detailed discussion of the theory
and function of each model.

RT

An RT is a decision tree used to predict continuous dependent variables. It functions by
iteratively splitting the dataset into subsets based on the values of input features, aiming to
partition the data into distinct regions. The process begins at the root node and continues
through a series of splits until reaching the terminal leaves (Loh, 2011). Figure 3 illustrates
the detailed structure of the RT splits. The tree structure shows how the CF is partitioned

Decision node
[ Decision node ] I Terminal node I
[ Decision node ] I Terminal node I
[ Decision node ] [ Decision node ]
[ Decision node ] I Terminal node I [ Decision node ] I Terminal node I
[ Decision node ] I Terminal node I [ Decision node ] | Decision node |
I Terminal node I I Terminal node I I Terminal node I I Terminal node I I Terminal node II Terminal node I

Figure 3. The regression tree structure with 12 terminal nodes
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in Equation 3, where each data point (x;) are segregated into the left and right sides based
on the most relevant features (x;) and their threshold (¢), with the primary objective of
minimizing prediction error.

The collected operational parameters serve as the input features, denoted as X, while
the target values represent the outputs of the dataset.

Xleft = {xi|xj < t}'Xright = {xi|xj > t} [3]

The tree structure continues splitting nodes until a stopping criterion is met. Equation
4 represents the computation of predictions by applying new input features (x) within a
specific region (R). The prediction, y(x), is calculated as the average output over individual
trees, expressed as the sum of outputs from each tree (y;):

1
y(x) = IRl Z Vi [4]

There are three main types of RT structures based on the number of terminal nodes:
fine, medium, and coarse trees. Fine trees create a structure with four terminal nodes,
capturing complex patterns in the data but often resulting in overfitting, which can reduce
the model’s generalizability. Medium trees create a structure with 12 terminal nodes,
providing a balance between complexity and generalization. Coarse trees, with 36 terminal
nodes, are less prone to overfitting but may be less accurate in capturing patterns within
the data (Cai et al., 2021).

Ensemble of Trees

Ensemble tree methods are regression algorithms that combine multiple decision tree
models to achieve greater accuracy than a single predictive model (Ghiasi & Zendehboudi,
2021) . The methods applied in this paper are the bagged tree and the least-squares
boosting tree (LSBoost). The bagged tree method employs bootstrap aggregation, also
known as bagging, to enhance predictive performance and reduce variance by averaging
the results of multiple decision trees. It creates an ensemble of trees by training multiple
trees independently on random subsets of the training data. Equation 5 describes the final
prediction y(x), where the predictions from each individual tree, y,,(x), are averaged. The
random subsets are generated through bootstrap sampling, where samples are partitioned
randomly with replacement, and M is the number of trees trained. Each tree is trained to
minimize prediction error on its respective sample.

M
1
Y = 35D (@) (5]
m=1
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Boosted trees utilize the LSBoost algorithm to minimize the residual sum of squares
between predicted and actual outputs, thereby enhancing model accuracy. This method is
particularly suitable for weak learners because it improves the overall model performance.
Each new model is trained sequentially to correct the errors made by previous models.
While this algorithm reduces bias, it can be prone to overfitting.

Equation 6 represents the ensemble models F,(x), where F,(x) is the initial model that is
calculated as the mean of the target values. The learning rate, denoted as v, partially influences
the contribution of each weak learner. The function /,,(x) represents the weak learner, which
computes the difference between the actual CF and the current model predictions.

M
Fa() = B+ ) vhy() 6]
m=1

SVR

Support vector machines (SVM) have an extension known as SVR, which creates an optimal
hyperplane based on the support vectors. Figure 4 illustrates the mechanism of SVR, where
the hyperplane is a multidimensional surface that separates the data points, and the support
vectors are the data points nearest to the hyperplane (Marafino et al., 2014). The goal of
this algorithm is to maximize the margin that distinctly separates the data points. Equation
7 describes the function of parallel hyperplanes (y(x)).

fx) =wx+b [7]

where w representing the margin and b is
a constant.

The decision boundary is defined as f{x)
= 0, which completely separates the two
classes. Data points with f{x) > 0 belong
to the red class, while data points with
f(x) <0 belong to the green class. Kernel
functions are used to transform the data
into a higher-dimensional space, aiming

to model a nonlinear relationship between : .
the input features and the CF. The kernels X,
can be categorized into Gaussian SVM and '
polynomial SVM. The variations of kernels

implemented in this study include quadratic, Figure 4. The illustration of the support vector
regression mechanism (Marafino et al., 2014)

—

Note. W = Weight vector; X = Data point vector;
coarse Gaussian. b = Bias

Ww-x+b=0

cubic, fine Gaussian, medium Gaussian, and
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ANN

An ANN is an algorithm inspired by the human brain’s mechanisms, enabling it to
handle non-linear relationships effectively. Figure 5 illustrates the architecture of a neural
network, where the input layer contains the attributes of the input features, with each
neuron representing a single feature. The output layer contains the neuron that holds the
target value, which in this case is the CF values. In the case of a continuous target value
or regression learner, the output layer consists of only one neuron. Between the input and
output layers is the hidden layer, where the network learns to improve prediction accuracy.
As the network expands, its capacity to learn complex relationships increases; however,
this also raises the risk of overfitting. Backpropagation is employed to minimize the error
between predicted and actual outputs (Comito & Pizzuti, 2022).

Input layer

Furnace section

Hidden layer

Output layer

Convective section

Metal temperature

« Bilayered network: 2 layers
: « Trilayered network: 3 layers
1 * Narrow network: 10 layers
1« Medium network: 25 layers
| - Wide network: 100 layers

Figure 5. Artificial neural network
Note. CF = Cleanliness factor

Model Validation

After training the model, the prediction accuracy of the training and testing datasets has
been analyzed using R? and MSE as key metrics. R? indicates the extent to which the
variance in the dependent variable can be predicted based on the independent variable,
with values closer to 1 indicating better model performance. Meanwhile, MSE measures
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the average squared difference between predicted and actual values; thus, a smaller MSE
indicates better performance. The equations for R? and MSE as shown in Equations 8 and 9.

1< oy
MSE = ;Z(yi -9 5]
i=

where y is the real plant data set or actual value, y is the prediction data set, and i is the
number of data until 7, the total number of samples.

R
R2 =1 RS [9]

Rrss
where Rpgs is the residual sum of squares between actual and predicted values and Rygg
is the sum of squared differences between actual values and the mean of actual values.

In addition, prediction speed and training time are also considered to provide insight
into model efficiency. Prediction speed refers to the number of predictions the model can
make per second, with higher values indicating better performance. Training time, on the
other hand, is the amount of time required to train the model, with more complex models
generally taking longer to train.

For this study, the analysis focuses on identifying the model with the highest R?, lowest
MSE, fewest selected features, highest prediction speed, and lowest training time. This
criterion is established to find the best nonlinear regression models that are compatible
with feature selection methods and capable of creating a robust nonlinear regression model.

RESULTS AND DISCUSSION

This section presents the simulation results and analyzes the performance of various
regression models, including RT, SVR, ensembles of trees, and ANN. Each model is
evaluated in detail, focusing on its strengths and weaknesses in predicting outcomes. The
section concludes with a comparative analysis of nonlinear regression models, comparing
the effectiveness of these models based on evaluation metrics.

Performance of the RT Model

The overall RT model demonstrates excellent performance on both datasets, as shown in
Table 10. Across all trees, the MSE values remain consistently low, ranging from 0.001 to
0.002, indicating that the models fit the training data very well. The medium tree model
exhibits the best performance, with R? values ranging from 0.973 to 0.958 for training and
from 0.979 to 0.958 for testing.

In comparison, the fine tree model shows a gradual decline in performance, with R?
values ranging from 0.973 to 0.953 for training and from 0.978 to 0.956 for testing. Lastly,
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Table 10
Performance results of the regression tree
Preset No. of features MSE Training) R?(Training) MSE (Test) R? (Test)

Fine tree 138 0.001 0.972 0.001 0.975
Fine tree 128 0.001 0.973 0.001 0.975
Fine tree 50 0.001 0.971 0.001 0.978
Fine tree 25 0.001 0.970 0.001 0.978
Fine tree 10 0.001 0.957 0.001 0.956
Medium tree 138 0.001 0.973 0.001 0.979
Medium tree 128 0.001 0.973 0.001 0.979
Medium tree 50 0.001 0.971 0.001 0.976
Medium tree 25 0.001 0.972 0.001 0.976
Medium tree 10 0.001 0.958 0.001 0.958
Coarse tree 138 0.001 0.969 0.001 0.975
Coarse tree 128 0.001 0.969 0.001 0.976
Coarse tree 50 0.001 0.968 0.001 0.968
Coarse tree 25 0.001 0.967 0.001 0.973
Coarse tree 10 0.002 0.953 0.002 0.954

Note. MSE = Mean squared error

the coarse tree model delivers the lowest performance, with R? values ranging from 0.969
to 0.953 for training and from 0.975 to 0.954 for testing.

The worst-performing model is the coarse tree with 10 selected features, achieving R>
values of 0.953 for training and 0.954 for testing, alongside MSE values of 0.002 for both
datasets. In contrast, the medium tree model with 10 features shows significantly better
performance, attaining an R? value of 0.958 and an MSE value of 0.001 for both datasets.
This indicates that the medium tree model achieves optimal performance while maintaining
computational efficiency with a smaller subset of features.

Performance of the Ensemble of Trees

The simulation results presented in Table 11 indicate that the bagged trees exhibit
exceptional performance on both datasets, with R* values ranging from 0.973 to 0.983 for
training and from 0.976 to 0.990 for testing, along with MSE values of 0.001 for training
and between 0 and 0.001 for testing. This performance suggests that the model is highly
effective at fitting the dataset with minimal variation across feature subsets.

In comparison, the performance of the boosted trees is lower, with R? values ranging
from 0.874 to 0.891 for training and from 0.872 to 0.899 for testing, as well as MSE values
0f 0.004 for training and between 0.003 and 0.004 for testing. This indicates that the boosted
tree is less effective for this specific dataset, although it still performs adequately.
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Table 11
Performance results of the ensemble of trees
Preset No. of features MSE (Training) R?(Training)  MSE (Test) R? (Test)

Bagged tree 138 0.001 0.983 0 0.990
Bagged tree 128 0.001 0.983 0 0.990
Bagged tree 50 0.001 0.982 0 0.989
Bagged tree 25 0.001 0.981 0 0.988
Bagged tree 10 0.001 0.973 0.001 0.976
Boosted tree 138 0.004 0.891 0.003 0.899
Boosted tree 128 0.004 0.891 0.003 0.898
Boosted tree 50 0.004 0.89 0.003 0.896
Boosted tree 25 0.004 0.887 0.004 0.893
Boosted tree 10 0.004 0.874 0.004 0.872

Note. MSE = Mean squared error

Overall, the boosted tree model with 10 features shows the worst performance,
achieving R? values of 0.874 for training and 0.872 for testing, along with an MSE value of
0.004 for both datasets. In contrast, the bagged trees model with 10 features demonstrates
excellent performance, achieving R? values of 0.973 for training and 0.976 for testing,
with an MSE value of 0.001 for both datasets.

Performance of the SVR

For this study, two types of kernels are used: Gaussian and polynomial kernels. The
Gaussian kernels consist of fine Gaussian, medium Gaussian, and coarse Gaussian,
while the polynomial kernels comprise quadratic and cubic kernels. Based on the results
documented in Table 12, Gaussian kernels demonstrate better performance compared to
polynomial kernels. This is evident from the R* values ranging from 0.798 to 0.990 for
training and from 0.785 to 0.982 for testing, along with MSE values ranging from 0.001
to 0.008 on both datasets.

In comparison, polynomial kernels exhibit a drastic performance reduction, with R?
values ranging from -236.941 to 0.898 for training and from -35.709 to 0.966 for testing,
alongside MSE values ranging from 0.003 to 56.522 for training and from 0.001 to 1.282
for testing. Despite the polynomial kernels showing better performance within the test
datasets, the significant differences between the training and testing results suggest potential
issues of overfitting or underfitting when feature selection is applied.

Among Gaussian kernels, the medium Gaussian kernel shows excellent performance,
with R? values ranging from 0.965 to 0.985 for training and from 0.966 to 0.938 for
testing, along with MSE values ranging from 0 to 0.001 for training and from 0.001 to
0.002 for testing. Following that, the coarse Gaussian kernel achieves R? values ranging
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Table 12
Performance results of the support vector regression
Preset No. of features ~ MSE (Training)  R?(Training) = MSE (Test) R’ (Test)

Fine Gaussian 138 0.007 0.798 0.008 0.785
Fine Gaussian 128 0.006 0.836 0.006 0.823
Fine Gaussian 50 0.004 0.878 0.005 0.867
Fine Gaussian 25 0.004 0.880 0.004 0.873
Fine Gaussian 10 0.004 0.893 0.004 0.887
Medium 138 0 0.989 0.001 0.966
Gaussian

Medium 128 0 0.990 0.001 0.964
Gaussian

Medium 50 0 0.990 0.001 0.958
Gaussian

Medium 25 0.001 0.984 0.002 0.951
Gaussian

Medium 10 0.001 0.970 0.002 0.938
Gaussian

Coarse Gaussian 138 0.001 0.979 0.001 0.982
Coarse Gaussian 128 0.001 0.980 0.001 0.982
Coarse Gaussian 50 0.001 0.979 0.001 0.982
Coarse Gaussian 25 0.001 0.971 0.001 0.970
Coarse Gaussian 10 0.002 0.943 0.002 0.937
Quadratic 138 0.007 0.795 0.001 0.966
Quadratic 128 0.128 -2.781 0.002 0.950
Quadratic 50 0.003 0.898 0.007 0.787
Quadratic 25 0.198 -4.838 0.022 0.374
Quadratic 10 0.006 0.835 0.053 -0.527
Cubic 138 0.185 -4.451 0.048 -0.364
Cubic 128 6.109 -178.741 0.053 -0.508
Cubic 50 56.522 -1662.100 0.067 -0.919
Cubic 25 8.087 -236.941 0.015 0.570
Cubic 10 2.706 -78.625 1.282 -35.709

Note. MSE = Mean squared error

from 0.980 to 0.943 for training and from 0.982 to 0.937 for testing, with MSE values
ranging from 0.001 to 0.002 for both datasets. Lastly, the fine Gaussian kernel delivers
lower performance, with R? values ranging from 0.798 to 0.893 for training and from
0.785 to 0.887 for testing, alongside MSE values ranging from 0.004 to 0.008 for both
datasets.

The significance of feature selection in improving model accuracy is evident throughout
the evaluations, particularly in the SVR models with fine Gaussian kernels. The models
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incorporating feature selection consistently achieve higher R* values, indicating a better fit
and enhanced predictive performance. These findings highlight the critical role of feature
selection in boosting the efficiency and reliability of machine learning models.

The worst-performing model is the cubic kernel with 25 features selected, achieving
R?.values of -236.941 for training and 0.570 for testing, and MSE values of 8.087 for
training and 0.015 for testing. In comparison, the best-performing model is the medium
Gaussian kernel with 10 features selected, achieving R* values of 0.970 for training and
0.938 for testing, with MSE values of 0.001 for training and 0.002 for testing.

Performance of the ANN

Overall, all network structures perform exceptionally well compared to other algorithms,
as shown in Table 13. This is evident with R* values ranging from 0.91 to 0.99 for training,
0.817 to 0.993 for testing, and MSE values ranging from 0 to 0.006 in both datasets. Among
the various network structures, it is particularly challenging to select the most suitable one.
Despite this, the worst-performing network structure is the trilayered network, which has
R? values ranging from 0.91 to 0.986 for training, 0.817 to 0.984 for testing, and MSE
values ranging from 0 to 0.006 in both datasets.

The most accurate models for each algorithm, regardless of the number of feature
subsets, have been identified. The bilayered network with 128 selected features achieves
R? values of 0.987 for training and 0.966 for testing, with MSE values of 0 for training
and 0.001 for testing. The trilayered network with 128 selected features achieves R?
values of 0.987 for training and 0.817 for testing, with MSE values of 0 for training and
0.006 for testing. The narrow network with 128 features achieves R* values of 0.989
for training and 0.988 for testing, with MSE values of 0 for both datasets. The medium
network with 128 features achieves R* values of 0.988 for training and 0.993 for testing,
along with MSE values of 0 for both datasets as well. Lastly, the wide network with 128
features achieves R? values of 0.99 for training and 0.993 for testing, with MSE values
of 0 for both datasets.

Despite the models’ superior accuracy, they are not considered the optimal choice
due to their reliance on numerous variables, which increases the risk of overfitting and
reduces the models’ generalizability. Overall, all network structures exhibit a great balance
in performance, but their effectiveness gradually declines as the number of features is
reduced to 10.

The worst-performing model is the trilayered model with 10 selected features, achieving
R? values of 0.91 for training and 0.978 for testing, along with MSE values of 0.003 for
training and 0.001 for testing. In comparison, the best-performing model is the medium
neural network with 10 selected features, achieving R? values of 0.961 for training and
0.988 for testing, with MSE values of 0.001 for both datasets.
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Table 13
Performance results of the artificial neural network
Preset No. of features  MSE (Training) R?(Training) MSE (Test) R? (Test)
Bilayered 138 0.001 0.979 0.004 0.884
Bilayered 128 0 0.987 0.001 0.966
Bilayered 50 0.001 0.979 0 0.991
Bilayered 25 0.001 0.967 0.001 0.972
Bilayered 10 0.002 0.944 0.001 0.984
Trilayered 138 0 0.986 0.001 0.984
Trilayered 128 0 0.987 0.006 0.817
Trilayered 50 0.001 0.984 0.003 0.918
Trilayered 25 0.001 0.973 0.001 0.971
Trilayered 10 0.003 0.910 0.001 0.978
Narrow 138 0.001 0.983 0.001 0.959
Narrow 128 0 0.989 0 0.988
Narrow 50 0.001 0.978 0.001 0.970
Narrow 25 0.001 0.973 0.001 0.969
Narrow 10 0.001 0.957 0.001 0.978
Medium 138 0 0.987 0.001 0.964
Medium 128 0 0.988 0 0.993
Medium 50 0.001 0.982 0.001 0.978
Medium 25 0.001 0.967 0.001 0.984
Medium 10 0.001 0.961 0.001 0.980
Wide 138 0 0.986 0.001 0.959
Wide 128 0 0.990 0 0.993
Wide 50 0.001 0.985 0 0.992
Wide 25 0.001 0.976 0 0.987
Wide 10 0.002 0.946 0.001 0.975

Note. MSE = Mean squared error

Comparative Analysis of Nonlinear Regression Models

The best model from each algorithm has been selected for evaluation, as summarized in
Table 14 for detailed comparison and analysis. The final training step compared model
performance based on the highest R? value, lowest MSE, and fewest selected features,
providing a robust measure of each model’s predictive capability in relation to feature
selection.

The bagged tree model performed exceptionally well in terms of overall accuracy,
achieving the highest R? value of 0.973 (training) and 0.976 (test), along with low MSE
values of 0.001 for both datasets. In Figure 6, there are a few outliers in the high-value
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Table 14
Summary of the best-performing model
Model No. of features MSE (Training) R’ (Training) MSE (Test) R? (Test)
Bagged tree 10 0.001 0.973 0.001 0.976
Medium NN 10 0.001 0.961 0.001 0.980
Medium 10 0.001 0.970 0.002 0.938
Gaussian SVR
Medium tree 10 0.001 0.958 0.001 0.958

Note. MSE = Mean squared error; NN = Neural network; SVR = Support vector regression

range, but they are minimal, indicating that the bagged tree model provides highly accurate
predictions with only a small margin of error. The regression line equation of this model
is y=0.9675x + 0.0378, and achieves the highest R? value among all, indicating that the
predicted values explain 97.3% of the variance in the actual values. The slope of 0.9675,
which is very close to 1, implies that the prediction scales well with the actual values.
Meanwhile, the small positive interception of 0.03781 may have introduced a very slight
upward bias. Overall, the bagged tree model achieves high accuracy and low bias, making
it the most reliable model in this comparison.

The second-best performer is the medium neural network (NN), with R? values 0of 0.961
(training) and 0.98 (test), and low MSE values of 0.001 for both datasets. In Figure 7, a
few outliers appear around value 6, which are much larger than the true response, though
most predictions cluster near the diagonal line. This suggests that the medium NN model
demonstrates strong predictive capability but may handle more outliers than the bagged
tree model. The regression line equation of this model is y = 0.9874x + 0.01478, the lower
variance of 96.1% compared to the bagged tree shows it is slightly less reliable. Its slope
is closest to 1, and the interception is minimal. However, a drop in R? suggests slightly
more errors in generalization and prediction variability.

The third performer is the medium Gaussian SVR, with R* values of 0.97 (training)
and 0.938 (test), and MSE values of 0.001 (training) and 0.002 (test). In Figure 8,
predictions generally scatter near the diagonal line but not as closely, indicating that the
medium Gaussian SVR model has good prediction accuracy but may be more prone to
error. The regression line equation of this model is y = 0.9637x + 0.0418, with a strong
R? value is nearly on par with the bagged tree. The slope is a little lower with a value of
0.9637, meaning predictions increase slightly less rapidly compared to actual values. The
slightly higher interception suggests a small, consistent overestimation. While it is a strong
model, its slightly lower slope and higher intercept are showing an inferior performance
as compared to the bagged tree model.

The final performer is the medium tree, with R? values of 0.958 for both datasets, and
MSE values of 0.001 for both datasets. This performance comparison suggests that these

PREPRINT



Comparing Models for CF Prediction in Coal-fired Utilities

models effectively reduce computational complexity while maintaining strong predictive

accuracy and efficiency. In Figure 9, more outliers appear compared to other models,

suggesting that the fine tree model struggles with outliers more than the others, leading

to increased errors. The regression line equation of this model is y = 0.9667x + 0.03852,

with the lowest R? value among the four models, suggesting it is less effective at capturing

the variability of the target variable. The slope and intercept are closely similar to the

bagged tree, but the reduced R? value implies more prediction error and weaker model

generalization. This model performs decently well but is the least preferable among the four.
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Overall, the bagged tree model is designated as the best model due to its balance of
high predictive accuracy, efficient use of a smaller, well-selected feature set, and strong
capability to minimize deviations caused by outliers. Moreover, the bagged tree model
consistently demonstrates excellent performance across both datasets, even with smaller
feature subsets.

CONCLUSION

This research effectively analyzed nonlinear regression models to predict the CF within the
convective sections of the boiler, highlighting the models’ practicality and performance in
these crucial areas. The study identified bagged trees, a medium neural network, a medium
Gaussian SVR, and a medium tree, all with 10 features selected to be the top-performing
machine learning models that required fewer feature subsets, which is essential for
optimizing boiler performance. For example, the bagged trees achieve an R? of 0.99 without
feature selection and 0.976 with only 10 selected features, resulting in a 93% reduction
from the original input. This reduction not only enhances computational speed and reduces
memory usage but also improves model interpretability and operational feasibility.

Comparatively, while NNs and SVR provided slightly higher accuracy, they demanded
more computational resources, especially in the training and tuning phases. On the other
hand, tree-based models such as bagged trees and medium trees offered a balanced trade-
off between performance and processing efficiency, allowing them to be more suitable for
real-time deployments. Moreover, implementing these models in operational environments
exposes them to challenges such as real-time sensor data, managing model complexity
during control system integration, and maintaining operational parameter settings.
Therefore, careful consideration must be given to sensor calibration and data preprocessing
pipelines to ensure robust integration.

Future research should focus on integrating reinforcement learning and online
monitoring machine learning techniques to adjust predictions based on live operational
data dynamically. By pinpointing these features more accurately, the study can support
the development of a more targeted and efficient soot-blowing mechanism. This would
enhance operational precision, leading to improved boiler efficiency, cost savings, and
extended equipment lifespan.
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