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ABSTRACT

This study presents a comparative analysis of nonlinear regression models integrated with feature 
selection for predicting the cleanliness factor (CF) in coal-fired utilities. The models evaluated are 
regression trees (RT), support vector regression (SVR), ensembles of trees, and artificial neural networks 
(ANN). Different boiler designs introduce various operational parameters that influence cleanliness, 
making it more challenging to predict real-time data accurately. To enhance the model’s predictive 
accuracy, the minimum redundancy maximum relevance (MRMR) feature selection technique was 
integrated, facilitating improved model performance by selecting the best subsets of variables. Model 
performance was assessed accordingly, where the number of selected features varies between 138 
and 10. The results indicate that a combination of bagged trees and MRMR with 10 features achieved 
R² values of 0.973 for the training set and 0.976 for the test set, with a mean squared error (MSE) of 
0.001 for both datasets. Compared to SVR and ANN, bagged trees consistently demonstrated superior 
predictive accuracy with reduced computational complexity. These findings confirm that ensemble-
based models, particularly bagged trees with MRMR, provide the most accurate and computationally 
efficient approach for CF prediction. An accurate CF prediction creates more reliable information for 
a data-driven approach that solves the soot-blowing operational system. The system has the risk of 
either underblowing or overblowing steam during boiler cleaning. This risk, if not properly handled, 

may lead to more severe ash fouling and slagging 
issues, such as emergency shutdowns, metal 
corrosion, and declining heat transfer efficiency 
in coal-fired utilities. Overall, improving real-time 
boiler monitoring minimizes steam waste during 
soot-blowing operations.

Keywords: Cleanliness factor, coal-fired boiler, feature 
selection, machine learning, nonlinear regression, soot 
blowing optimization



PREPRINT

Nur Aina Mohammad Abdul Aziz, Azura Che Soh, Asnor Juraiza Ishak, Nor Mohd Haziq Norsahperi and Amir Redzuan Mohd Ibrahim

INTRODUCTION

Coal-fired power plants generate substantial soot, leading to issues such as ash fouling and 
slagging in boiler sections (Wei et al., 2020). These issues not only reduce heat transfer 
efficiency but can also cause damage to boiler components, raising operational costs and 
creating additional maintenance demands. Soot-blowing mechanisms are employed to 
mitigate these effects, using high-temperature, high-pressure steam to remove soot from 
boiler walls and pipes (Kumari & Srinivasan, 2019). However, soot-blowing traditionally 
follows a fixed schedule, relying on operator experience, which can result in inconsistent 
cleaning due to human error (P. Li et al., 2023; Q. Li et al., 2020; Shi et al., 2021; Wen et 
al., 2022). To evaluate cleaning effectiveness, the CF is used as a metric, comparing the 
boiler’s current condition to an ideally clean state (Shi et al., 2022).

A coal-fired power plant is known to operate with a high-dimensional dataset (Menn 
& Chudnovsky, 2021). Despite improvements in boiler design and technology, research 
on identifying key parameters that affect boiler cleanliness has been limited, particularly 
in utilizing data mining techniques for predictive modeling. Thota and Syed (2024) 
mentioned that while coal-fired utilities have much operational data, the usage of unwanted 
characteristics and past data is not being addressed properly, which later causes the 
prediction performance to degrade. Different boiler designs and configurations will introduce 
varying parameters that can impact the cleanliness of the boiler. Thus, relying on the expert 
advice based on previous boilers may overlook hidden correlations within the boiler. 

This study addresses the need for feature selection methods to identify the most relevant 
parameters for accurate CF predictions. Feature selection algorithms help identify the 
best subsets of variables that enhance model performance by focusing on critical factors 
and reducing complexity (Bezerra et al., 2024; Jemai & Zarrad, 2023). Given that the CF 
ranges continuously from 0 to 1, regression learners are well-suited for this task, as they can 
capture continuous outputs based on the model’s input features. Furthermore, considering 
the high-dimensional dataset, nonlinear relationships will be utilized to identify patterns 
among key parameters that influence boiler cleanliness.

Therefore, this research explores various nonlinear regression models that incorporate 
feature selection techniques, comparing their performance to determine the most effective 
approach for analyzing data from coal-fired boilers. The objective is to develop robust 
regression models that use real production data to predict the CF within the convective sections 
of coal-fired power plants, ultimately enhancing cleaning efficiency and operational stability.

Overview of Coal-Fired Boiler

The overview of an ultra-supercritical boiler power plant operated by one of the major 
utility providers in Malaysia is presented in Figure 1. The plant includes several key 
components: the boiler system, furnace system, boiler clean-up and start-up system, and 
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air and gas system. Additionally, the metal 
temperature throughout the power plant is 
considered. The components are primarily 
categorized based on their respective heat 
exchangers.

The boiler system’s pulverizer consists 
of six coal flow storage units, as listed in 
Table 1. Of these, five will be operated 
simultaneously, while one will serve as a 
backup for the coal flow. Pulverizers grind 

Figure 1. Overview of ultra-supercritical boiler power plant (Source: Tenaga Nasional Berhad [TNB], 2024)

Table 1
Parameters of pulverizer

No. Parameter Unit
1. Pulv A coal flow t/h
2. Pulv B coal flow t/h
3. Pulv C coal flow t/h
4. Pulv D coal flow t/h
5. Pulv E coal flow t/h
6. Pulv F coal flow t/h

Note. Pulv = Pulverizer

coal into a fine powder, which is subsequently used as fuel for combustion in the boiler to 
optimize combustion efficiency.

The following parameters are essential for the main soot-blowing operation system, 
as shown in Table 2. The main steam pressure, flow, and temperature sensors measure the 
pressure, flow, and temperature generated within the boiler. An optical pyrometer sensor is 
used to monitor the flue gas components. Two types of fans are utilized: the primary air fan 
(PAF), which transports pulverized coal from the pulverizers to the furnace area, and the 
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forced draft fan (FDF), which supplies fresh 
air to the furnace for the combustion process. 
Additionally, feedwater pressure and flow 
sensors monitor the feedwater as it enters the 
boiler. The target load measures the power 
output required from the steam turbine, while 
the steam blow-off ring (SBR) steam flow 
sensor measures steam flow as part of the 
power plant’s safety and operational systems.

The economizer is a component of the 
convective section of the boiler used to preheat 
feedwater before it enters the boiler. This 
process reduces the amount of coal required 
to produce high heat for steam generation. 
Additionally, the economizer cools down 
the flue gas before it is released into the 
atmosphere. Sensors monitor parameters, 
including the oxygen percentage, gas inlet 
and outlet temperatures, and feedwater 
inlet and outlet temperatures within the 
economizer. The detailed parameters for the 
economizer are listed in Table 3.

The primary superheater (PSH), 
located within the convective section of 
the boiler, serves as the initial stage in the 
superheating process. Its primary function 
is to elevate the temperature of the steam 
without increasing its pressure, optimizing 
thermal efficiency while maintaining 
safe operational limits. Key parameters 
monitored by sensors include steam inlet 
and outlet temperatures, as well as spray 

Table 2
Parameters of the main operation

No. Parameter Unit
1. Main steam pressure MPag
2. Main steam flow t/hr
3. Main steam temperature 1 degC
4. Optical pyrometer sensor 1 degC
5. Optical pyrometer sensor 2 degC
6. PAF A air volume flow t/h
7. PAF B air volume flow t/h
8. FDF A air volume flow t/h
9. FDF B air volume flow t/h
10. Feed water pressure MPa
11. FW flow t/h
12. Main steam (A) pressure Mpag
13. Main steam (B) pressure MPag
14. Target load (net) MW
15. SBR steam flow t/h

Note. PAF = Primary air fan; FDF = Force draft fan; 
FW = Feedwater; SBR = Steam blow-off ring

Table 3
Parameters of economizer

No. Parameter Unit
1. ECON A out gas O2 anal %
2. ECON B out gas O2 anal %
3. ECON out gas TEMP 1 degC
4. ECON out gas TEMP 2 degC
5. ECON inlet FW TEMP degC
6. ECON outlet FW TEMP degC
7. ECON B outlet FW TEMP degC
8. ECON inlet FW flow 3 t/h

Note. ECON = Economizer; O2 = Oxygen; TEMP = 
Temperature; FW = Feedwater

water flow, ensuring effective and controlled temperature increases. The detailed 
parameters for the PSH are listed in Table 4.

The secondary superheater (SSH), also situated in the convective section, is the second 
stage of superheating and further elevates the steam’s temperature to ultra-high levels. This 
additional temperature increase enhances the thermal energy available for power generation. 
Similar to the PSH, sensors monitor critical parameters such as the steam inlet and outlet 
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temperatures and spray water flow, ensuring precise temperature control at this advanced 
heating stage. The detailed parameters for the SSH are listed in Table 5.

Following the SSH, the final superheater (FSH), the third stage of superheating, maximizes 
the steam’s temperature just before it enters the high-pressure turbine. This maximization 
step is crucial for achieving the highest possible efficiency in power generation. Sensors in 
the FSH monitor vital parameters, including steam inlets and outlet temperatures, to ensure 
optimal performance and safety. The detailed parameters for the FSH are listed in Table 6.

The reheater (RH) component, part of the boiler’s convective section, reintroduces 
heat to the steam after it exits the high-pressure turbine, raising its temperature before it 
enters the low and intermediate-pressure turbines. This reheating process is essential for 
sustaining efficiency and preventing moisture formation, which could damage turbine 

Table 4
Parameters of primary superheaters (PSH)

No. Parameter Unit
1. PSH A inlet steam TEMP degC
2. PSH B inlet steam TEMP degC
3. PSH A out steam TEMP degC
4. PSH B out steam TEMP degC
5. PSH spray water flow (1st stage) t/h

Note. TEMP = Temperature

Table 5
Parameters of secondary superheaters (SSH)

No. Parameter Unit
1. SSH A inlet steam TEMP degC
2. SSH B inlet steam TEMP degC
3. SSH A out steam TEMP degC
4. SSH B out steam TEMP degC
5. SSH spray water CV A POS %
6. SSH spray water CV B POS %
7. SSH spray water flow t/h

Note. TEMP = Temperature; CV = Control valve; 
POS = Position

Table 6
Parameters of final superheaters (FSH)

No. Parameter Unit
1. FSH A inlet steam TEMP degC
2. FSH B inlet steam TEMP degC
3. FSH A out steam TEMP degC
4. FSH B out steam TEMP degC

Note. TEMP = Temperature

Table 7
Parameters of reheaters (RH)

No. Parameter Unit
1. PRH steam TEMP A degC
2. PRH steam TEMP B degC
3. FRH A out steam TEMP degC
4. FRH B out steam TEMP degC
5. HRH A steam pressure (A) MPa
6. HRH B steam pressure (B) MPa
7. CRH steam TEMP A degC
8. CRH steam TEMP B degC
9. CRH steam A pressure MPa
11. RH spray water CV A POS %
12. RH spray water CV B POS %
13. RH spray water flow t/h
14. HORIZ RH out gas TEMP 1 degC

Note. PRH = Primary reheater; FRH = Final reheater; 
HRH = Hot reheat; CRH = Cold reheat; HORIZ = 
Horizontal; TEMP = Temperature; CV = Control 
valve; POS = Position

blades. Key parameters, such as steam inlet 
and outlet temperatures, are continuously 
monitored by sensors to regulate this reheat 
phase effectively. The detailed parameters 
for the RH are listed in Table 7.
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The air heater (AH), located in the convective section of the boiler, preheats the 
combustion air by utilizing residual heat from the flue gases, thereby enhancing overall 
combustion efficiency. By raising the temperature of the incoming air, the AH reduces the 
energy required for combustion, thereby improving the boiler’s thermal efficiency and 
reducing fuel consumption. Sensors within the AH monitor key parameters, such as the inlet 
gas temperature, to ensure optimal heat transfer and maintain efficient preheating conditions. 
This monitoring enables precise adjustments, maximizing both energy conservation and 
combustion efficiency. The detailed parameters for the AH are listed in Table 8.

Metal temperature sensors make up the largest number of sensors in the power plant, 
serving to monitor the temperature of various metal components. Due to the extensive 

Table 8
Parameters of air heaters (AH)

No. Parameter Unit
1. AH A inlet gas TEMP degC
2. AH B inlet gas TEMP degC

Note. TEMP = Temperature

Table 9
Metal temperature sensors

No. Furnace Superheaters Reheaters
1. MNJ:05:_BSC1_AI_0186 MNJ:05:_BSC2_AI_0281 MNJ:05:_BSC2_AI_0317
2. MNJ:05:_BSC1_AI_0187 MNJ:05:_BSC2_AI_0282 MNJ:05:_BSC2_AI_0319
3. MNJ:05:_BSC1_AI_0188 MNJ:05:_BSC2_AI_0283 MNJ:05:_BSC2_AI_0322
4. MNJ:05:_BSC1_AI_0189 MNJ:05:_BSC2_AI_0284 MNJ:05:_BSC2_AI_0324
5. MNJ:05:_BSC1_AI_0190 MNJ:05:_BSC2_AI_0285 MNJ:05:_BSC2_AI_0318
6. MNJ:05:_BSC1_AI_0191 MNJ:05:_BSC2_AI_0286 MNJ:05:_BSC2_AI_0321
7. MNJ:05:_BSC1_AI_0193 MNJ:05:_BSC2_AI_0287 MNJ:05:_BSC2_AI_0323
8. MNJ:05:_BSC1_AI_0194 MNJ:05:_BSC2_AI_0289 MNJ:05:_BSC2_AI_0325
9. MNJ:05:_BSC1_AI_0195 MNJ:05:_BSC1_AI_0165 MNJ:05:_BSC2_AI_0326
10. MNJ:05:_BSC1_AI_0234 MNJ:05:_BSC1_AI_0166 MNJ:05:_BSC2_AI_0327
11. MNJ:05:_BSC1_AI_0235 MNJ:05:_BSC1_AI_0167 MNJ:05:_BSC2_AI_0329
12. MNJ:05:_BSC1_AI_0236 MNJ:05:_BSC1_AI_0244 MNJ:05:_BSC2_AI_0330
13. MNJ:05:_BSC1_AI_0237 MNJ:05:_BSC1_AI_0245 MNJ:05:_BSC2_AI_0331
14. MNJ:05:_BSC1_AI_0238 MNJ:05:_BSC1_AI_0246 MNJ:05:_BSC2_AI_0332
15. MNJ:05:_BSC1_AI_0239 MNJ:05:_BSC1_AI_0259 MNJ:05:_BSC2_AI_0333
16. MNJ:05:_BSC1_AI_0241 MNJ:05:_BSC1_AI_0260 MNJ:05:_BSC2_AI_0334
17. MNJ:05:_BSC1_AI_0242 MNJ:05:_BSC1_AI_0261
18. MNJ:05:_BSC1_AI_0243 MNJ:05:_BSC1_AI_0262
19. MNJ:05:_BSC1_AI_0169 MNJ:05:_BSC1_AI_0263
20. MNJ:05:_BSC1_AI_0170 MNJ:05:_BSC1_AI_0265

area required for heat transfer, numerous 
sensors are installed within the boiler. 
Accurate temperature control is imperative 
for optimizing coal power plant efficiency. 
The metal temperature sensors are listed in 
Table 9.
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METHODOLOGY

This research focuses on developing nonlinear regression models, enhanced with feature 
selection techniques, to analyze and identify the most robust model for gaining insights 
into new parameters within the convective sections of the boiler. The model development 
process begins with data collection from the power plant, followed by data preprocessing 
to ensure the quality and accuracy of the data. The dataset is then partitioned into training 
and testing sets.

A crucial part of the analysis involves computing CF, which serves as the target 
variable to measure boiler efficiency. Feature selection techniques are applied to identify 
key predictive variables, after which nonlinear regression models are developed, trained, 
and tested. Finally, prediction results are evaluated and compared to determine the model’s 
accuracy and effectiveness, guiding improvements in operational efficiency for the boiler’s 
convective components. 

Dataset Preparation: Preprocessing and Partitioning Data

This dataset was extracted from a 1,000 MW ultra-supercritical coal-fired power plant in 
Malaysia, covering the years 2018 and 2023. Data from 2018 is considered the reference 
state of cleanliness for the boiler, while data from 2023 represent the current state of 
the boiler under investigation. According to plant engineers and technicians, the data 
from 2018 is considered to represent the cleanest operating conditions, as it marks the 
beginning of full-scale operations at the power plant. Before that, the plant was still in its 
trial phase. A total of 138 parameters were collected throughout the power plant. The raw 
data is primarily sourced from heat exchanger components to identify the parameters most 

No. Furnace Superheaters Reheaters
21. MNJ:05:_BSC1_AI_0171 MNJ:05:_BSC1_AI_0266
22. MNJ:05:_BSC1_AI_0172 MNJ:05:_BSC1_AI_0310
23. MNJ:05:_BSC1_AI_0173 MNJ:05:_BSC2_AI_0308
24. MNJ:05:_BSC1_AI_0217 MNJ:05:_BSC2_AI_0309
25. MNJ:05:_BSC1_AI_0218 MNJ:05:_BSC2_AI_0310
26. MNJ:05:_BSC1_AI_0219 MNJ:05:_BSC2_AI_0311
27. MNJ:05:_BSC1_AI_0220 MNJ:05:_BSC2_AI_0313
28. MNJ:05:_BSC1_AI_0221 MNJ:05:_BSC2_AI_0314
29. MNJ:05:_BSC2_AI_0315
30. MNJ:05:_BSC2_AI_0316

Note. MNJ:05: BSC1_AI_xxxx = Manjung unit 5 boiler superheater coil 1 analog input no. xxxx; MNJ:05: 
BSC2_AI_xxxx = Manjung unit 5 boiler superheater coil 2 analog input no. xxxx

Table 9 (continue)
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influencing boiler cleanliness. This process includes data preprocessing, CF computation, 
and data partitioning.

Preprocessing is essential to ensure model quality, as it helps eliminate outliers and 
manage missing values. Null data, where values were not recorded properly, is removed 
because most algorithms cannot process such entries. Outliers, defined as data with a 
target load below 750 MW, are also excluded. Data within the target load range is retained, 
as values below this threshold often correspond to the boiler’s start-up phase before 
combustion stabilizes and are unsuitable for model development. After preprocessing, the 
dataset is randomly partitioned into training and testing sets, with an 80:20 ratio, where 
80% of the data is used for training and 20% is reserved for testing.

Computing the Cleanliness Factor

In this study, the CF is selected as the dependent variable to assess fouling conditions in 
the convective section of the boiler. Equation 1 defines the calculation method for CF, 
which has been validated as an effective means of determining the cleanliness status of 
heat exchangers. CF is defined as the ratio of the real-time heat transfer rate, Qr, to the 
heat transfer rate under clean conditions, Qc ​(Breeding et al., 2010).

𝐶𝐶𝐶𝐶 =
𝑄𝑄𝑟𝑟
𝑄𝑄𝑐𝑐

 					    [1]

The equations for heat transfer rates under real-time and clean conditions (Qr/c) are 
fundamentally similar, differing only by the timeframe of data collection. Reference data for 
the clean condition were recorded in 2018, marking the start of full-scale operations at the 
power plant. Therefore, this timeframe is considered to represent the boiler’s cleanest state. 
Equation 2 defines the computation of the heat transfer rate, providing an accurate average 
based on the inlet and outlet temperatures of the gas and steam (Madejski et al., 2018).

𝑄𝑄𝑟𝑟/𝑐𝑐 = 𝑚𝑚 (𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  −  𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ) 		  [2]

Here, m is the mass flow rate, and Houtlet​ and Hinlet​ represent the enthalpy values 
from the superheated steam table, based on the steam temperature and pressure within the 
boiler. This calculation ensures data consistency. Ultimately, this equation is adapted to 
align with the dataset, with CF designated as the target variable for training the nonlinear 
regression model.

Model Development

Model training in this study incorporates nonlinear regression models alongside feature 
selection techniques. Models with all 138 features represent those without feature selection, 
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as illustrated in the research model framework in Figure 2. Feature selection is performed 
using the MRMR algorithm, resulting in varying numbers of selected features. RT, SVR, 
ensembles of trees, and ANN are then developed based on the selected features.

Figure 2. Structure of the research framework 
Note. MRMR = Minimum redundancy maximum relevance; SVM = Support vector machine; ANN = 
Artificial neural network

Implementation of Feature Selection 

The MRMR algorithm is a widely used feature selection method that identifies the 
most relevant features for predicting the target output while simultaneously minimizing 
redundancy among the selected features. By balancing relevance and redundancy, MRMR 
ensures that the chosen features provide highly informative and non-overlapping inputs to 
the model, ultimately enhancing the model’s predictive accuracy and interpretability (Peng 
et al., 2005). This study adopts MRMR mainly due to its characteristics, which balance 
feature importance while still removing redundancy. Other techniques, such as recursive 
feature elimination (RFE), may have a high computational cost for large datasets (Ding 
et al., 2022) . 

Prior to model training, feature selection is conducted using the MRMR algorithm. 
This step helps evaluate the impact of feature selection on model performance and stability, 
providing insight into the effectiveness of different feature sets. For each algorithm, feature 
subsets are selected in varying sizes—128, 50, 25, and 10 parameters, allowing the model 
to be trained with predetermined numbers of features. This approach enables a thorough 
assessment of the consistency and effectiveness of model performance based on different 
feature set sizes, supporting a robust evaluation of the role of feature selection in enhancing 
model reliability and generalizability.
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Implementation of Nonlinear Regression Models

Models that correlate dependent and independent variables in a nonlinear manner 
to predict numerical outcomes effectively capture complex relationships, providing 
more accurate predictions of continuous data compared to linear models (Liang et al., 
2022). The models selected for this study are RT, SVR, an ensemble of trees, and ANN. 
These models were chosen based on their suitability for handling nonlinear datasets, 
relatively low computational complexity, efficient processing time, and availability 
in the Matrix Laboratory (MATLAB). RT offers clear interpretability and can capture 
nonlinear relationships with minimal data preprocessing. SVR is particularly effective 
in high-dimensional datasets and maintains strong generalization performance due to its 
robustness against overfitting. An ensemble of trees combines multiple trees to enhance 
predictive performance, thereby improving accuracy, reducing overfitting, and increasing 
model robustness. Finally, ANN is widely applied in machine learning for its powerful 
capabilities in capturing complex and nonlinear patterns within data. It can also generalize 
well to unseen data. The following section provides a detailed discussion of the theory 
and function of each model.

RT

An RT is a decision tree used to predict continuous dependent variables. It functions by 
iteratively splitting the dataset into subsets based on the values of input features, aiming to 
partition the data into distinct regions. The process begins at the root node and continues 
through a series of splits until reaching the terminal leaves (Loh, 2011). Figure 3 illustrates 
the detailed structure of the RT splits. The tree structure shows how the CF is partitioned 

Figure 3. The regression tree structure with 12 terminal nodes  
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in Equation 3, where each data point (xi) are segregated into the left and right sides based 
on the most relevant features (xj) and their threshold (t), with the primary objective of 
minimizing prediction error.

The collected operational parameters serve as the input features, denoted as X, while 
the target values represent the outputs of the dataset.

𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = �𝑥𝑥𝑖𝑖�𝑥𝑥𝑗𝑗  ≤ 𝑡𝑡�,𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = �𝑥𝑥𝑖𝑖�𝑥𝑥𝑗𝑗  > 𝑡𝑡� 	 [3]

The tree structure continues splitting nodes until a stopping criterion is met. Equation 
4 represents the computation of predictions by applying new input features (x) within a 
specific region (R). The prediction, y(x), is calculated as the average output over individual 
trees, expressed as the sum of outputs from each tree (yi):

𝑦𝑦(𝑥𝑥) =  
1

|𝑅𝑅|
 �𝑦𝑦𝑖𝑖  				    [4]

There are three main types of RT structures based on the number of terminal nodes: 
fine, medium, and coarse trees. Fine trees create a structure with four terminal nodes, 
capturing complex patterns in the data but often resulting in overfitting, which can reduce 
the model’s generalizability. Medium trees create a structure with 12 terminal nodes, 
providing a balance between complexity and generalization. Coarse trees, with 36 terminal 
nodes, are less prone to overfitting but may be less accurate in capturing patterns within 
the data (Cai et al., 2021).

Ensemble of Trees

Ensemble tree methods are regression algorithms that combine multiple decision tree 
models to achieve greater accuracy than a single predictive model (Ghiasi & Zendehboudi, 
2021) . The methods applied in this paper are the bagged tree and the least-squares 
boosting tree (LSBoost). The bagged tree method employs bootstrap aggregation, also 
known as bagging, to enhance predictive performance and reduce variance by averaging 
the results of multiple decision trees. It creates an ensemble of trees by training multiple 
trees independently on random subsets of the training data. Equation 5 describes the final 
prediction y(x), where the predictions from each individual tree, ym(x), are averaged. The 
random subsets are generated through bootstrap sampling, where samples are partitioned 
randomly with replacement, and M is the number of trees trained. Each tree is trained to 
minimize prediction error on its respective sample.

𝑦𝑦(𝑥𝑥) =  
1
𝑀𝑀
� 𝑦𝑦𝑚𝑚 (𝑥𝑥)
𝑀𝑀

𝑚𝑚=1

 			   [5]
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Boosted trees utilize the LSBoost algorithm to minimize the residual sum of squares 
between predicted and actual outputs, thereby enhancing model accuracy. This method is 
particularly suitable for weak learners because it improves the overall model performance. 
Each new model is trained sequentially to correct the errors made by previous models. 
While this algorithm reduces bias, it can be prone to overfitting.

Equation 6 represents the ensemble models Fm(x), where Fo(x) is the initial model that is 
calculated as the mean of the target values. The learning rate, denoted as v, partially influences 
the contribution of each weak learner. The function hm(x) represents the weak learner, which 
computes the difference between the actual CF and the current model predictions.

𝐹𝐹𝑚𝑚 (𝑥𝑥) =  𝐹𝐹0(𝑥𝑥) +  � 𝑣𝑣ℎ𝑚𝑚 (𝑥𝑥)
𝑀𝑀

𝑚𝑚=1

 		  [6]

SVR

Support vector machines (SVM) have an extension known as SVR, which creates an optimal 
hyperplane based on the support vectors. Figure 4 illustrates the mechanism of SVR, where 
the hyperplane is a multidimensional surface that separates the data points, and the support 
vectors are the data points nearest to the hyperplane (Marafino et al., 2014). The goal of 
this algorithm is to maximize the margin that distinctly separates the data points. Equation 
7 describes the function of parallel hyperplanes (y(x)).

𝑓𝑓(x) = 𝑤𝑤x + 𝑏𝑏 				    [7]

Figure 4. The illustration of the support vector 
regression mechanism (Marafino et al., 2014)
Note. 𝑤𝑤��⃗  

 𝑥𝑥��⃗  

 = Weight vector; 

𝑤𝑤��⃗  

 𝑥𝑥��⃗  = Data point vector; 
b = Bias 

where w representing the margin and b is 
a constant.

The decision boundary is defined as f(x) 
= 0, which completely separates the two 
classes. Data points with f(x) > 0 belong 
to the red class, while data points with 
f(x) < 0  belong to the green class. Kernel 
functions are used to transform the data 
into a higher-dimensional space, aiming 
to model a nonlinear relationship between 
the input features and the CF. The kernels 
can be categorized into Gaussian SVM and 
polynomial SVM. The variations of kernels 
implemented in this study include quadratic, 
cubic, fine Gaussian, medium Gaussian, and 
coarse Gaussian.
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ANN

An ANN is an algorithm inspired by the human brain’s mechanisms, enabling it to 
handle non-linear relationships effectively. Figure 5 illustrates the architecture of a neural 
network, where the input layer contains the attributes of the input features, with each 
neuron representing a single feature. The output layer contains the neuron that holds the 
target value, which in this case is the CF values. In the case of a continuous target value 
or regression learner, the output layer consists of only one neuron. Between the input and 
output layers is the hidden layer, where the network learns to improve prediction accuracy. 
As the network expands, its capacity to learn complex relationships increases; however, 
this also raises the risk of overfitting. Backpropagation is employed to minimize the error 
between predicted and actual outputs (Comito & Pizzuti, 2022).

Figure 5. Artificial neural network
Note. CF = Cleanliness factor 

Model Validation

After training the model, the prediction accuracy of the training and testing datasets has 
been analyzed using R2 and MSE as key metrics. R2 indicates the extent to which the 
variance in the dependent variable can be predicted based on the independent variable, 
with values closer to 1 indicating better model performance. Meanwhile, MSE measures 
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the average squared difference between predicted and actual values; thus, a smaller MSE 
indicates better performance. The equations for R2 and MSE as shown in Equations 8 and 9.

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝓃𝓃
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝓃𝓃

𝑖𝑖=1

 			   [8]

where 𝑦 is the real plant data set or actual value, 𝑦̂ is the prediction data set, and 𝑖 is the 
number of data until 𝓃, the total number of samples.

𝑅𝑅2 = 1 −
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇

 				    [9]

where RRSS is the residual sum of squares between actual and predicted values and RTSS  
is the sum of squared differences between actual values and the mean of actual values.

In addition, prediction speed and training time are also considered to provide insight 
into model efficiency. Prediction speed refers to the number of predictions the model can 
make per second, with higher values indicating better performance. Training time, on the 
other hand, is the amount of time required to train the model, with more complex models 
generally taking longer to train.

For this study, the analysis focuses on identifying the model with the highest R2, lowest 
MSE, fewest selected features, highest prediction speed, and lowest training time. This 
criterion is established to find the best nonlinear regression models that are compatible 
with feature selection methods and capable of creating a robust nonlinear regression model.

RESULTS AND DISCUSSION

This section presents the simulation results and analyzes the performance of various 
regression models, including RT, SVR, ensembles of trees, and ANN. Each model is 
evaluated in detail, focusing on its strengths and weaknesses in predicting outcomes. The 
section concludes with a comparative analysis of nonlinear regression models, comparing 
the effectiveness of these models based on evaluation metrics. 

Performance of the RT Model

The overall RT model demonstrates excellent performance on both datasets, as shown in 
Table 10. Across all trees, the MSE values remain consistently low, ranging from 0.001 to 
0.002, indicating that the models fit the training data very well. The medium tree model 
exhibits the best performance, with R2 values ranging from 0.973 to 0.958 for training and 
from 0.979 to 0.958 for testing.

In comparison, the fine tree model shows a gradual decline in performance, with R2 
values ranging from 0.973 to 0.953 for training and from 0.978 to 0.956 for testing. Lastly, 
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the coarse tree model delivers the lowest performance, with R2 values ranging from 0.969 
to 0.953 for training and from 0.975 to 0.954 for testing.

The worst-performing model is the coarse tree with 10 selected features, achieving R2 
values of 0.953 for training and 0.954 for testing, alongside MSE values of 0.002 for both 
datasets. In contrast, the medium tree model with 10 features shows significantly better 
performance, attaining an R2 value of 0.958 and an MSE value of 0.001 for both datasets. 
This indicates that the medium tree model achieves optimal performance while maintaining 
computational efficiency with a smaller subset of features.

Performance of the Ensemble of Trees   

The simulation results presented in Table 11 indicate that the bagged trees exhibit 
exceptional performance on both datasets, with R2 values ranging from 0.973 to 0.983 for 
training and from 0.976 to 0.990 for testing, along with MSE values of 0.001 for training 
and between 0 and 0.001 for testing. This performance suggests that the model is highly 
effective at fitting the dataset with minimal variation across feature subsets.

In comparison, the performance of the boosted trees is lower, with R2 values ranging 
from 0.874 to 0.891 for training and from 0.872 to 0.899 for testing, as well as MSE values 
of 0.004 for training and between 0.003 and 0.004 for testing. This indicates that the boosted 
tree is less effective for this specific dataset, although it still performs adequately.

Table 10
Performance results of the regression tree

Preset No. of features MSE Training) R2 (Training) MSE (Test) R2  (Test)
Fine tree 138 0.001 0.972 0.001 0.975
Fine tree 128 0.001 0.973 0.001 0.975
Fine tree 50 0.001 0.971 0.001 0.978
Fine tree 25 0.001 0.970 0.001 0.978
Fine tree 10 0.001 0.957 0.001 0.956
Medium tree 138 0.001 0.973 0.001 0.979
Medium tree 128 0.001 0.973 0.001 0.979
Medium tree 50 0.001 0.971 0.001 0.976
Medium tree 25 0.001 0.972 0.001 0.976
Medium tree 10 0.001 0.958 0.001 0.958
Coarse tree 138 0.001 0.969 0.001 0.975
Coarse tree 128 0.001 0.969 0.001 0.976
Coarse tree 50 0.001 0.968 0.001 0.968
Coarse tree 25 0.001 0.967 0.001 0.973
Coarse tree 10 0.002 0.953 0.002 0.954

Note. MSE = Mean squared error
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Overall, the boosted tree model with 10 features shows the worst performance, 
achieving R2 values of 0.874 for training and 0.872 for testing, along with an MSE value of 
0.004 for both datasets. In contrast, the bagged trees model with 10 features demonstrates 
excellent performance, achieving R2 values of 0.973 for training and 0.976 for testing, 
with an MSE value of 0.001 for both datasets.

Performance of the SVR

For this study, two types of kernels are used: Gaussian and polynomial kernels. The 
Gaussian kernels consist of fine Gaussian, medium Gaussian, and coarse Gaussian, 
while the polynomial kernels comprise quadratic and cubic kernels. Based on the results 
documented in Table 12, Gaussian kernels demonstrate better performance compared to 
polynomial kernels. This is evident from the R2 values ranging from 0.798 to 0.990 for 
training and from 0.785 to 0.982 for testing, along with MSE values ranging from 0.001 
to 0.008 on both datasets.

In comparison, polynomial kernels exhibit a drastic performance reduction, with R2 
values ranging from -236.941 to 0.898 for training and from -35.709 to 0.966 for testing, 
alongside MSE values ranging from 0.003 to 56.522 for training and from 0.001 to 1.282 
for testing. Despite the polynomial kernels showing better performance within the test 
datasets, the significant differences between the training and testing results suggest potential 
issues of overfitting or underfitting when feature selection is applied.

Among Gaussian kernels, the medium Gaussian kernel shows excellent performance, 
with R2 values ranging from 0.965 to 0.985 for training and from 0.966 to 0.938 for 
testing, along with MSE values ranging from 0 to 0.001 for training and from 0.001 to 
0.002 for testing. Following that, the coarse Gaussian kernel achieves R2 values ranging 

Table 11
Performance results of the ensemble of trees

Preset No. of features MSE (Training) R² (Training) MSE (Test) R² (Test)
Bagged tree 138 0.001 0.983 0 0.990
Bagged tree 128 0.001 0.983 0 0.990
Bagged tree 50 0.001 0.982 0 0.989
Bagged tree 25 0.001 0.981 0 0.988
Bagged tree 10 0.001 0.973 0.001 0.976
Boosted tree 138 0.004 0.891 0.003 0.899
Boosted tree 128 0.004 0.891 0.003 0.898
Boosted tree 50 0.004 0.89 0.003 0.896
Boosted tree 25 0.004 0.887 0.004 0.893
Boosted tree 10 0.004 0.874 0.004 0.872

Note. MSE = Mean squared error
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from 0.980 to 0.943 for training and from 0.982 to 0.937 for testing, with MSE values 
ranging from 0.001 to 0.002 for both datasets. Lastly, the fine Gaussian kernel delivers 
lower performance, with R2 values ranging from 0.798 to 0.893 for training and from 
0.785 to 0.887 for testing, alongside MSE values ranging from 0.004 to 0.008 for both 
datasets.

The significance of feature selection in improving model accuracy is evident throughout 
the evaluations, particularly in the SVR models with fine Gaussian kernels. The models 

Table 12
Performance results of the support vector regression 

Preset No. of features MSE (Training) R2 (Training) MSE (Test) R2 (Test)
Fine Gaussian 138 0.007 0.798 0.008 0.785
Fine Gaussian 128 0.006 0.836 0.006 0.823
Fine Gaussian 50 0.004 0.878 0.005 0.867
Fine Gaussian 25 0.004 0.880 0.004 0.873
Fine Gaussian 10 0.004 0.893 0.004 0.887
Medium 
Gaussian

138 0 0.989 0.001 0.966

Medium 
Gaussian

128 0 0.990 0.001 0.964

Medium 
Gaussian

50 0 0.990 0.001 0.958

Medium 
Gaussian

25 0.001 0.984 0.002 0.951

Medium 
Gaussian

10 0.001 0.970 0.002 0.938

Coarse Gaussian 138 0.001 0.979 0.001 0.982
Coarse Gaussian 128 0.001 0.980 0.001 0.982
Coarse Gaussian 50 0.001 0.979 0.001 0.982
Coarse Gaussian 25 0.001 0.971 0.001 0.970
Coarse Gaussian 10 0.002 0.943 0.002 0.937
Quadratic 138 0.007 0.795 0.001 0.966
Quadratic 128 0.128 -2.781 0.002 0.950
Quadratic 50 0.003 0.898 0.007 0.787
Quadratic 25 0.198 -4.838 0.022 0.374
Quadratic 10 0.006 0.835 0.053 -0.527
Cubic 138 0.185 -4.451 0.048 -0.364
Cubic 128 6.109 -178.741 0.053 -0.508
Cubic 50 56.522 -1662.100 0.067 -0.919
Cubic 25 8.087 -236.941 0.015 0.570
Cubic 10 2.706 -78.625 1.282 -35.709

Note. MSE = Mean squared error
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incorporating feature selection consistently achieve higher R2 values, indicating a better fit 
and enhanced predictive performance. These findings highlight the critical role of feature 
selection in boosting the efficiency and reliability of machine learning models.

The worst-performing model is the cubic kernel with 25 features selected, achieving 
R2.values of -236.941 for training and 0.570 for testing, and MSE values of 8.087 for 
training and 0.015 for testing. In comparison, the best-performing model is the medium 
Gaussian kernel with 10 features selected, achieving R2 values of 0.970 for training and 
0.938 for testing, with MSE values of 0.001 for training and 0.002 for testing.

Performance of the ANN   

Overall, all network structures perform exceptionally well compared to other algorithms, 
as shown in Table 13. This is evident with R2 values ranging from 0.91 to 0.99 for training, 
0.817 to 0.993 for testing, and MSE values ranging from 0 to 0.006 in both datasets. Among 
the various network structures, it is particularly challenging to select the most suitable one. 
Despite this, the worst-performing network structure is the trilayered network, which has 
R2 values ranging from 0.91 to 0.986 for training, 0.817 to 0.984 for testing, and MSE 
values ranging from 0 to 0.006 in both datasets.

The most accurate models for each algorithm, regardless of the number of feature 
subsets, have been identified. The bilayered network with 128 selected features achieves  
R2 values of 0.987 for training and 0.966 for testing, with MSE values of 0 for training 
and 0.001 for testing. The trilayered network with 128 selected features achieves R2 
values of 0.987 for training and 0.817 for testing, with MSE values of 0 for training and 
0.006 for testing. The narrow network with 128 features achieves R2 values of 0.989 
for training and 0.988 for testing, with MSE values of 0 for both datasets. The medium 
network with 128 features achieves R2 values of 0.988 for training and 0.993 for testing, 
along with MSE values of 0 for both datasets as well. Lastly, the wide network with 128 
features achieves R2 values of 0.99 for training and 0.993 for testing, with MSE values 
of 0 for both datasets.

Despite the models’ superior accuracy, they are not considered the optimal choice 
due to their reliance on numerous variables, which increases the risk of overfitting and 
reduces the models’ generalizability. Overall, all network structures exhibit a great balance 
in performance, but their effectiveness gradually declines as the number of features is 
reduced to 10.

The worst-performing model is the trilayered model with 10 selected features, achieving  
R2 values of 0.91 for training and 0.978 for testing, along with MSE values of 0.003 for 
training and 0.001 for testing. In comparison, the best-performing model is the medium 
neural network with 10 selected features, achieving R2 values of 0.961 for training and 
0.988 for testing, with MSE values of 0.001 for both datasets.
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Comparative Analysis of Nonlinear Regression Models    

The best model from each algorithm has been selected for evaluation, as summarized in 
Table 14 for detailed comparison and analysis. The final training step compared model 
performance based on the highest R2 value, lowest MSE, and fewest selected features, 
providing a robust measure of each model’s predictive capability in relation to feature 
selection.

The bagged tree model performed exceptionally well in terms of overall accuracy, 
achieving the highest R2 value of 0.973 (training) and 0.976 (test), along with low MSE 
values of 0.001 for both datasets. In Figure 6, there are a few outliers in the high-value 

Table 13
Performance results of the artificial neural network

Preset No. of features MSE (Training) R² (Training) MSE (Test) R² (Test)
Bilayered 138 0.001 0.979 0.004 0.884
Bilayered 128 0 0.987 0.001 0.966
Bilayered 50 0.001 0.979 0 0.991
Bilayered 25 0.001 0.967 0.001 0.972
Bilayered 10 0.002 0.944 0.001 0.984
Trilayered 138 0 0.986 0.001 0.984
Trilayered 128 0 0.987 0.006 0.817
Trilayered 50 0.001 0.984 0.003 0.918
Trilayered 25 0.001 0.973 0.001 0.971
Trilayered 10 0.003 0.910 0.001 0.978
Narrow 138 0.001 0.983 0.001 0.959
Narrow 128 0 0.989 0 0.988
Narrow 50 0.001 0.978 0.001 0.970
Narrow 25 0.001 0.973 0.001 0.969
Narrow 10 0.001 0.957 0.001 0.978
Medium 138 0 0.987 0.001 0.964
Medium 128 0 0.988 0 0.993
Medium 50 0.001 0.982 0.001 0.978
Medium 25 0.001 0.967 0.001 0.984
Medium 10 0.001 0.961 0.001 0.980
Wide 138 0 0.986 0.001 0.959
Wide 128 0 0.990 0 0.993
Wide 50 0.001 0.985 0 0.992
Wide 25 0.001 0.976 0 0.987
Wide 10 0.002 0.946 0.001 0.975

Note. MSE = Mean squared error
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range, but they are minimal, indicating that the bagged tree model provides highly accurate 
predictions with only a small margin of error. The regression line equation of this model 
is y = 0.9675x + 0.0378, and achieves the highest R2 value among all, indicating that the 
predicted values explain 97.3% of the variance in the actual values. The slope of 0.9675, 
which is very close to 1, implies that the prediction scales well with the actual values. 
Meanwhile, the small positive interception of 0.03781 may have introduced a very slight 
upward bias. Overall, the bagged tree model achieves high accuracy and low bias, making 
it the most reliable model in this comparison.

The second-best performer is the medium neural network (NN), with R2 values of 0.961 
(training) and 0.98 (test), and low MSE values of 0.001 for both datasets. In Figure 7, a 
few outliers appear around value 6, which are much larger than the true response, though 
most predictions cluster near the diagonal line. This suggests that the medium NN model 
demonstrates strong predictive capability but may handle more outliers than the bagged 
tree model. The regression line equation of this model is y = 0.9874x + 0.01478, the lower 
variance of 96.1% compared to the bagged tree shows it is slightly less reliable. Its slope 
is closest to 1, and the interception is minimal. However, a drop in R2 suggests slightly 
more errors in generalization and prediction variability.

The third performer is the medium Gaussian SVR, with R2 values of 0.97 (training) 
and 0.938 (test), and MSE values of 0.001 (training) and 0.002 (test). In Figure 8, 
predictions generally scatter near the diagonal line but not as closely, indicating that the 
medium Gaussian SVR model has good prediction accuracy but may be more prone to 
error. The regression line equation of this model is y = 0.9637x + 0.0418, with a strong 
R2 value is nearly on par with the bagged tree. The slope is a little lower with a value of 
0.9637, meaning predictions increase slightly less rapidly compared to actual values. The 
slightly higher interception suggests a small, consistent overestimation. While it is a strong 
model, its slightly lower slope and higher intercept are showing an inferior performance 
as compared to the bagged tree model.

The final performer is the medium tree, with R2 values of 0.958 for both datasets, and 
MSE values of 0.001 for both datasets. This performance comparison suggests that these 

Table 14
Summary of the best-performing model 

Model No. of features MSE (Training) R² (Training) MSE (Test) R² (Test)
Bagged tree 10 0.001 0.973 0.001 0.976
Medium NN 10 0.001 0.961 0.001 0.980

Medium 
Gaussian SVR

10 0.001 0.970 0.002 0.938

Medium tree 10 0.001 0.958 0.001 0.958

Note. MSE = Mean squared error; NN = Neural network; SVR = Support vector regression 
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models effectively reduce computational complexity while maintaining strong predictive 
accuracy and efficiency. In Figure 9, more outliers appear compared to other models, 
suggesting that the fine tree model struggles with outliers more than the others, leading 
to increased errors. The regression line equation of this model is y = 0.9667x + 0.03852,  
with the lowest R2 value among the four models, suggesting it is less effective at capturing 
the variability of the target variable. The slope and intercept are closely similar to the 
bagged tree, but the reduced R2 value implies more prediction error and weaker model 
generalization. This model performs decently well but is the least preferable among the four. 

Figure 6. Response of bagged trees with 10 selected 
features

Figure 7. Response of the medium artificial neural 
network with 10 selected features

Figure 8. Response of the medium Gaussian support 
vector regression with 10 selected features

Figure 9. Response of the medium tree with 10 
selected features
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Overall, the bagged tree model is designated as the best model due to its balance of 
high predictive accuracy, efficient use of a smaller, well-selected feature set, and strong 
capability to minimize deviations caused by outliers. Moreover, the bagged tree model 
consistently demonstrates excellent performance across both datasets, even with smaller 
feature subsets.

CONCLUSION

This research effectively analyzed nonlinear regression models to predict the CF within the 
convective sections of the boiler, highlighting the models’ practicality and performance in 
these crucial areas. The study identified bagged trees, a medium neural network, a medium 
Gaussian SVR, and a medium tree, all with 10 features selected to be the top-performing 
machine learning models that required fewer feature subsets, which is essential for 
optimizing boiler performance. For example, the bagged trees achieve an R² of 0.99 without 
feature selection and 0.976 with only 10 selected features, resulting in a 93% reduction 
from the original input. This reduction not only enhances computational speed and reduces 
memory usage but also improves model interpretability and operational feasibility. 

Comparatively, while NNs and SVR provided slightly higher accuracy, they demanded 
more computational resources, especially in the training and tuning phases. On the other 
hand, tree-based models such as bagged trees and medium trees offered a balanced trade-
off between performance and processing efficiency, allowing them to be more suitable for 
real-time deployments. Moreover, implementing these models in operational environments 
exposes them to challenges such as real-time sensor data, managing model complexity 
during control system integration, and maintaining operational parameter settings. 
Therefore, careful consideration must be given to sensor calibration and data preprocessing 
pipelines to ensure robust integration. 

Future research should focus on integrating reinforcement learning and online 
monitoring machine learning techniques to adjust predictions based on live operational 
data dynamically. By pinpointing these features more accurately, the study can support 
the development of a more targeted and efficient soot-blowing mechanism. This would 
enhance operational precision, leading to improved boiler efficiency, cost savings, and 
extended equipment lifespan.
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